Abstract
This study evaluates input error function observers for tracking of stiffness variation in real-time. The input error function is an Analytical Redundancy (AR)-based diagnosis method and necessitates a mathematical model of the system and system identification techniques. In practice, mathematical models used during numerical simulations differ from the actual status of the structure, and thus, accurate mathematical models are rarely available for reference. Noise is an unwanted signal in the input–output measurements but unavoidable in real-world applications (as in long span bridge trusses) and hard to imitate during numerical simulations. Simulation data from the truss system clearly indicates the effectiveness of the proposed structural damage detection method for estimating the severity of the damage. Optimization of the input error function can further automate the stiffness estimation in structural members and address critical aspects such as system uncertainties and the presence of noise in input–output measurements. Stiffness tracking in one of the planar truss members indicates the potential of optimization of the input error function for online structural health monitoring and implementing condition-based maintenance.
Funder
National Aeronautics and Space Administration
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science