Abstract
Otosclerosis is a common middle ear disease that requires a combination of examinations for its diagnosis in routine. In a previous study, we showed that this disease could be potentially diagnosed by wideband tympanometry (WBT) coupled with a convolutional neural network (CNN) in a rapid and non-invasive manner. We showed that deep transfer learning with data augmentation could be applied successfully on such a task. However, the involved synthetic and realistic data have a significant discrepancy that impedes the performance of transfer learning. To address this issue, a Gaussian processes-guided domain adaptation (GPGDA) algorithm was developed. It leveraged both the loss about the distribution distance calculated by the Gaussian processes and the loss of conventional cross entropy during the transferring. On a WBT dataset including 80 otosclerosis and 55 control samples, it achieved an area-under-the-curve of 97.9±1.1 percent after receiver operating characteristic analysis and an F1-score of 95.7±0.9 percent that were superior to the baseline methods (r=10, p<0.05, ANOVA). To understand the algorithm’s behavior, the role of each component in the GPGDA was experimentally explored on the dataset. In conclusion, our GPGDA algorithm appears to be an effective tool to enhance CNN-based WBT classification in otosclerosis using just a limited number of realistic data samples.
Funder
China Scholarship Council
Chinese Academy of Sciences
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献