A Modified Multi-Winding DC–DC Flyback Converter for Photovoltaic Applications

Author:

Pesce CristiánORCID,Riedemann Javier,Peña RubénORCID,Degano Michele,Pereda Javier,Villalobos Rodrigo,Maury Camilo,Young HectorORCID,Andrade Iván

Abstract

DC–DC power converters have generated much interest, as they can be used in a wide range of applications. In micro-inverter applications, flyback topologies are a relevant research topic due to their efficiency and simplicity. On the other hand, solar photovoltaic (PV) systems are one of the fastest growing and most promising renewable energy sources in the world. A power electronic converter (either DC/DC or DC/AC) is needed to interface the PV array with the load/grid. In this paper, a modified interleaved-type step-up DC–DC flyback converter is presented for a PV application. The topology is based on a multi-winding flyback converter with N parallel connected inputs and a single output. Each input is supplied by an independent PV module, and a maximum power point tracking algorithm is implemented in each module to maximize solar energy harvesting. A single flyback transformer is used, and it manages only 1/N of the converter rated power, reducing the size of the magnetic core compared to other similar topologies. The design of the magnetic core is also presented in this work. Moreover, the proposed converter includes active snubber networks to increase the efficiency, consisting of a capacitor connected in series with a power switch, to protect the main switches from damaging dv/dt when returning part of the commutation energy back to the source. In this work, the operating principle of the topology is fully described on a mathematical basis, and an efficiency analysis is also included. The converter is simulated and experimentally validated with a 1 kW prototype considering three PV panels. The experimental results are in agreement with the simulations, verifying the feasibility of the proposal.

Funder

Agencia Nacional de Investigación y Desarrollo

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference31 articles.

1. Power control of a grid-connected PV system during asymmetrical voltage faults

2. By 2023, the World Will Have 1 Trillion Watts of Installed Solar PV Capacityhttps://www.greentechmedia.com/articles/read/by-2023-the-world-will-have-one-trillion-watts-of-installed-solar-pv-capaci

3. A Review of Single-Phase Grid-Connected Inverters for Photovoltaic Modules

4. Photovoltaic Flyback Microinverter With Tertiary Winding Current Sensing

5. Pulse-Width Modulated DC–DC Power Converters;Kazimierczuk,2008

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3