Fuzzy Logic-Based Controller for Bipedal Robot

Author:

Khoi Phan BuiORCID,Nguyen Xuan HongORCID

Abstract

In this paper, the problem of controlling a human-like bipedal robot while walking is studied. The control method commonly applied when controlling robots in general and bipedal robots in particular, was based on a dynamical model. This led to the need to accurately define the dynamical model of the robot. The activities of bipedal robots to replace humans, serve humans, or interact with humans are diverse and ever-changing. Accurate determination of the dynamical model of the robot is difficult because it is difficult to fully and accurately determine the dynamical quantities in the differential equations of motion of the robot. Additionally, another difficulty is that because the robot’s operation is always changing, the dynamical quantities also change. There have been a number of works applying fuzzy logic-based controllers and neural networks to control bipedal robots. These methods can overcome to some extent the uncertainties mentioned above. However, it is a challenge to build appropriate rule systems that ensure the control quality as well as the controller’s ability to perform easily and flexibly. In this paper, a method for building a fuzzy rule system suitable for bipedal robot control is proposed. The design of the motion trajectory for the robot according to the human gait and the analysis of dynamical factors affecting the equilibrium condition and the tracking trajectory were performed to provide informational data as well as parameters. Based on that, a fuzzy rule system and fuzzy controller was proposed and built, allowing a determination of the control force/moment without relying on the dynamical model of the robot. For evaluation, an exact controller based on the assumption of an accurate dynamical model, which was a two-feedback loop controller based on integrated inverse dynamics with proportional integral derivative, is also proposed. To confirm the validity of the proposed fuzzy rule system and fuzzy controller, computation and numerical simulation were performed for both types of controllers. Comparison of numerical simulation results showed that the fuzzy rule system and the fuzzy controller worked well. The proposed fuzzy rule system is simple and easy to apply.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference43 articles.

1. Modeling and Control for Efficient Bipedal Walking Robots;Siciliano,2009

2. Biped Locomotion: Dynamics, Stability, Control and Application;Vukobratovie,1990

3. Bipedal Robots: Modeling, Design and Walking Synthesis;Chevallereau,2009

4. Biped Robots: The State of Art;Bezerra,2004

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3