Research on a Magnetic Separation-Based Rapid Nucleic Acid Extraction System and Its Detection Applications

Author:

Li Yao1,Liu Sha1,Wang Yuanyuan1,Wang Yue1,Li Song1,He Nongyue12,Deng Yan1,Chen Zhu1

Affiliation:

1. Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China

2. State Key Laboratory of Digital Medical Engineering, School of Biological and Medical Engineering, Southeast University, Nanjing 210096, China

Abstract

Nucleic acid extraction represents the “first step” in molecular diagnostic experiments. The quality of this extraction serves as a fundamental prerequisite for ensuring the accuracy of nucleic acid detection. This article presents a comprehensive design scheme for a rapid automated nucleic acid extraction system based on magnetic separation. The design and implementation of the system are analyzed and investigated in-depth, focusing on the core methods, hardware control, and software control of the automated nucleic acid extraction system. Additionally, a study and evaluation were carried out concerning the nucleic acid extraction and detection aspects encompassed by the system. The results demonstrate that the temperature deviation in the lysis and elution fluids is approximately ±1 °C, the positioning accuracy of the system’s movement is ±0.005 mm, the average magnetic bead recovery rate is 94.98%, and the average nucleic acid recovery rate is 91.83%. The developed automated system and manual methods are employed for sample extraction, enabling the isolation of highly pure nucleic acids from bacteria, blood, and animal tissues for RT-PCR detection. The instrument employs lysis temperatures ranging from 70–80 °C, elution temperature of 80 °C, and drying time of 5–10 min, with a total extraction time of less than 35 min for different sample types. Overall, the system yields high nucleic acid concentration and purity, exhibits stable instrument operation, good repeatability, high efficiency, and low cost. It meets the requirements of genetic-level research and is worthy of clinical promotion and usage.

Funder

National Natural Science Foundation of China

Hunan Provincial Natural Science Foundation of China

Education Department of Hunan Province

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3