The Development of Reagentless Amperometric Glucose Biosensor Based on Gold Nanostructures, Prussian Blue and Glucose Oxidase

Author:

Sakalauskiene Laura1,Brasiunas Benediktas1,Popov Anton12ORCID,Kausaite-Minkstimiene Asta12ORCID,Ramanaviciene Almira12ORCID

Affiliation:

1. NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko St. 24, LT-03225 Vilnius, Lithuania

2. Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariskiu St. 5, LT-08406 Vilnius, Lithuania

Abstract

Precise blood glucose detection plays a crucial role in diagnosing and medicating diabetes, in addition to aiding diabetic patients in effectively managing their condition. In this research, a first-generation reagentless amperometric glucose biosensor was developed by combining the graphite rod (GR) electrode modification by gold nanostructures (AuNS) and Prussian blue (PB) with glucose oxidase (GOx)—an enzyme that can oxidize glucose and produce H2O2. Firstly, AuNS was electrochemically deposited on the GR electrode (AuNS/GR), and then PB was electrochemically synthesized on the AuNS/GR electrode (PB/AuNS/GR). Finally, GOx was immobilized over the PB/AuNS nanocomposite with the assistance of Nafion (Nf) (Nf-GOx/PB/AuNS/GR). An application of PB in the design of a glucose biosensor enables an easy electrochemical reduction and, thus, the determination of the H2O2 produced during the GOx-catalyzed oxidation of glucose in the sample at a low operation potential of −0.05 V vs. Ag/AgCl/KCl3 mol L−1. In addition, AuNS increased the electrochemically active surface area, improved the GOx immobilization and ensured a higher analytical signal. The developed glucose biosensor based on the Nf-GOx/PB/AuNS/GR electrode exhibited a wide linear range, from 0.025 to 1 mmol L−1 of glucose, with a 0.0088 mmol L−1 limit of detection, good repeatability and high selectivity over electroactive interfering substances. The developed biosensor is convenient for the determination of glucose in the physiological environment.

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3