Berry–Esseen Bounds of the Quasi Maximum Likelihood Estimators for the Discretely Observed Diffusions

Author:

Bishwal Jaya P. N.

Abstract

For stationary ergodic diffusions satisfying nonlinear homogeneous Itô stochastic differential equations, this paper obtains the Berry–Esseen bounds on the rates of convergence to normality of the distributions of the quasi maximum likelihood estimators based on stochastic Taylor approximation, under some regularity conditions, when the diffusion is observed at equally spaced dense time points over a long time interval, the high-frequency regime. It shows that the higher-order stochastic Taylor approximation-based estimators perform better than the basic Euler approximation in the sense of having smaller asymptotic variance.

Publisher

MDPI AG

Reference29 articles.

1. Parameter Estimation in Stochastic Differential Equations;Bishwal,2008

2. Parameter Estimation in Stochastic Volatility Models;Bishwal,2021

3. The consistency of an estimate of a parameter of a stochastic differential equation;Dorogovcev;Theory Prob. Math. Stat.,1976

4. The consistency of a non-linear least squares estimator from diffusion processes

5. Asymptotic theory for non-linear least squares estimator for diffusion processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3