The Mathematics of Catastrophe

Author:

Lewis Ted GyleORCID

Abstract

A mathematical description of catastrophe in complex systems modeled as a network is presented with emphasis on network topology and its relationship to risk and resilience. We present mathematical formulas for computing risk, resilience, and likelihood of faults in nodes/links of network models of complex systems and illustrate the application of the formulas to simulation of catastrophic failure. This model is not related to nonlinear “Catastrophe theory” by René Thom, E.C. Zeeman and others. Instead, we present a strictly probabilistic network model for estimating risk and resilience—two useful metrics used in practice. We propose a mathematical model of exceedance probability, risk, and resilience and show that these properties depend wholly on vulnerability, consequence, and properties of the network representation of the complex system. We use simulation of the network under simulated stress causing one or more nodes/links to fail, to extract properties of risk and resilience. In this paper two types of stress are considered: viral cascades and flow cascades. One unified definition of risk, MPL, is proposed, and three kinds of resilience illustrated—viral cascading, blocking node/link, and flow resilience. The principal contributions of this work are new equations for risk and resilience and measures of resilience based on vulnerability of individual nodes/links and network topology expressed in terms of spectral radius, bushy, and branchy metrics. We apply the model to a variety of networks—hypothetical and real—and show that network topology needs to be included in any definition of network risk and resilience. In addition, we show how simulations can identify likely future faults due to viral and flow cascades. Simulations of this nature are useful to the practitioner.

Publisher

MDPI AG

Reference23 articles.

1. Critical Infrastructure Protection: Defending a Networked Nation;Lewis,2020

2. Natural Catastrophe Probable Maximum Loss

3. Uncertainty

4. Self-organized criticality: An explanation of the 1/fnoise

5. How Nature Works: The Science of Self-Organized Criticality;Bak,1996

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3