1. Long, Z., Lu, Y., Ma, X., and Dong, B. (2018, January 10–15). PDE-Net: Learning PDEs from Data. Proceedings of the Machine Learning Research, Stockholm, Sweden.
2. Raissi, M., Perdikaris, P., and Karniadakis, G.E. (2017). Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations. arXiv.
3. Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., and Anandkumar, A. (2020). Fourier Neural Operator for Parametric Partial Differential Equations. arXiv.
4. Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., and Anandkumar, A. (2020). Neural Operator: Graph Kernel Network for Partial Differential Equations. arXiv.
5. Yadav, S., and Ganesan, S. (2021, January 17–19). SPDE-Net: Neural Network-based prediction of the stabilization parameter for SUPG technique. Proceedings of the 13th Asian Conference on Machine Learning, Virtual. Available online: https://proceedings.mlr.press/v157/yadav21a.html.