Estimation of Expectations and Variance Components in Two-Level Nested Simulation Experiments

Author:

Muñoz David Fernando1ORCID

Affiliation:

1. Department of Industrial and Operations Engineering, Instituto Tecnológico Autónomo de México, Rio Hondo 1, Mexico City 01080, Mexico

Abstract

When there is uncertainty in the value of parameters of the input random components of a stochastic simulation model, two-level nested simulation algorithms are used to estimate the expectation of performance variables of interest. In the outer level of the algorithm n observations are generated for the parameters, and in the inner level m observations of the simulation model are generated with the values of parameters fixed at the values generated in the outer level. In this article, we consider the case in which the observations at both levels of the algorithm are independent and show how the variance of the observations can be decomposed into the sum of a parametric variance and a stochastic variance. Next, we derive central limit theorems that allow us to compute asymptotic confidence intervals to assess the accuracy of the simulation-based estimators for the point forecast and the variance components. Under this framework, we derive analytical expressions for the point forecast and the variance components of a Bayesian model to forecast sporadic demand, and we use these expressions to illustrate the validity of our theoretical results by performing simulation experiments with this forecast model. We found that, given a fixed number of total observations nm, the choice of only one replication in the inner level (m=1) is recommended to obtain a more accurate estimator for the expectation of a performance variable.

Funder

Asociación Mexicana de Cultura A.C. and the National Council of Science of Technology of Mexico

Publisher

MDPI AG

Reference39 articles.

1. Ren, J. (2021). Multi-Criteria Decision Analysis for Risk Assessment and Management, Springer.

2. Smith, J.S., and Sturrock, D.T. (2022). Simio and Simulation: Modeling, Analysis, Applications, Simio LLC. [6th ed.].

3. Chung, K.L. (2001). A Course in Probability Theory, Academic Press. [3rd ed.].

4. Asmussen, S., and Glynn, P.W. (2007). Stochastic Simulation Algorithms and Analysis, Springer.

5. Computing bayesian means using simulation;Glynn;ACM TOMACS,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3