Physics-Informed Neural Networks for Bingham Fluid Flow Simulation Coupled with an Augmented Lagrange Method

Author:

Zhang Jianying1

Affiliation:

1. Department of Mathematics, Western Washington University, Bellingham, WA 98225, USA

Abstract

As a class of non-Newtonian fluids with yield stresses, Bingham fluids possess both solid and liquid phases separated by implicitly defined non-physical yield surfaces, which makes the standard numerical discretization challenging. The variational reformulation established by Duvaut and Lions, coupled with an augmented Lagrange method (ALM), brings about a finite element approach, whereas the inevitable local mesh refinement and preconditioning of the resulting large-scaled ill-conditioned linear system can be involved. Inspired by the mesh-free feature and architecture flexibility of physics-informed neural networks (PINNs), an ALM-PINN approach to steady-state Bingham fluid flow simulation, with dynamically adaptable weights, is developed and analyzed in this work. The PINN setting enables not only a pointwise ALM formulation but also the learning of families of (physical) parameter-dependent numerical solutions through one training process, and the incorporation of ALM into a PINN induces a more feasible loss function for deep learning. Numerical results obtained via the ALM-PINN training on one- and two-dimensional benchmark models are presented to validate the proposed scheme. The efficacy and limitations of the relevant loss formulation and optimization algorithms are also discussed to motivate some directions for future research.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3