A Study of Singular Similarity Solutions to Laplace’s Equation with Dirichlet Boundary Conditions

Author:

Feng Chao-Kang1ORCID,Tang Jyh-Haw2ORCID

Affiliation:

1. Department of Aerospace Engineering, Tamkng University, Tamsui, New Taipei City 251301, Taiwan

2. Department of Civil Engineering, Chung Yuan Christian University, Zhongli, Taoyuan City 320314, Taiwan

Abstract

The infinite series solution to the boundary-value problems of Laplace’s equation with discontinuous Dirichlet boundary conditions was found by using the basic method of separation of variables. The merit of this paper is that the closed-form solution, or the singular similarity solution in the semi-infinite strip domain and the first-quadrant domain, can be generated from the basic infinite series solution in the rectangular domain. Moreover, based on the superposition principle, the infinite series solution in the rectangular domain can be related to the singular similarity solution in the semi-infinite strip domain. It is proven that the analytical source-type singular behavior in the infinite series solution near certain singular points in the rectangular domain can be revealed from the singular similarity solution in the semi-infinite strip domain. By extending the boundary of the rectangular domain, the infinite series solution to Laplace’s equation in the first-quadrant domain can be derived to obtain the analytical singular similarity solution in a direct and much easier way than by using the methods of Fourier transform, images, and conformal mapping.

Publisher

MDPI AG

Reference14 articles.

1. Carslaw, H.S., and Jaeger, J.C. (1959). Conduction of Heat in Solid, Oxford University Press. [2nd ed.].

2. Kevorkian, J. (2010). Partial Differential Equations: Analytical Solution Techniques, Springer. [2nd ed.].

3. Myint-U, T., and Debnath, L. (2007). Linear Partial. Differential Equations for Scientists and Engineers, Springer. [4th ed.].

4. Haberman, R. (2013). Applied Partial Differential Equations: With Fourier Series and Boundary Value Problems, Pearson Education, Pearson Publishing Company. [5th ed.].

5. Churchill, R.V., and Brown, J.W. (1978). Fourier Series and Boundary Value Problems, McGraw-Hill. [3rd ed.].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3