New Bivariate Copulas via Lomax Distribution Generated Distortions

Author:

Aldhufairi Fadal Abdullah Ali1ORCID,Sepanski Jungsywan H.2ORCID

Affiliation:

1. Department of Mathematics, King Khalid University, Asir-Abha 61421, KSA, Saudi Arabia

2. Department of Statistics, Acturial & Data Sciences, Additional Central Michigan University, Mt. Pleasant, MI 48859, USA

Abstract

We develop a framework for creating distortion functions that are used to construct new bivariate copulas. It is achieved by transforming non-negative random variables with Lomax-related distributions. In this paper, we apply the distortions to the base copulas of independence, Clayton, Frank, and Gumbel copulas. The properties of the tail dependence coefficient, tail order, and concordance ordering are explored for the new families of distorted copulas. We conducted an empirical study using the daily net returns of Amazon and Google stocks from January 2014 to December 2023. We compared the popular Clayton, Gumbel, Frank, and Gaussian copula models to their corresponding distorted copula models induced by the unit-Lomax and unit-inverse Pareto distortions. The new families of distortion copulas are equipped with additional parameters inherent in the distortion function, providing more flexibility, and are demonstrated to perform better than the base copulas. After analyzing the data, we have found that the joint extremes of Amazon and Google stocks are more likely for high daily net returns than for low daily net returns.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3