Phenotypic Array for Identification and Screening of Antifungals against Aspergillus Isolates from Respiratory Infections in KwaZulu Natal, South Africa

Author:

Naicker Sarla1,Mohanlall Viresh1ORCID,Ngubane Sandile1ORCID,Mellem John1,Mchunu Nokuthula Peace2

Affiliation:

1. Department of Biotechnology and Food Science, Durban University of Technology, Durban 4000, Kwa-Zulu Natal, South Africa

2. National Research Foundation, Pretoria 0001, Brummeria, South Africa

Abstract

The rapid emergence of invasive fungal infections correlates with the increasing population of immunocompromised individuals, with many cases leading to death. The progressive increase in the incidence of Aspergillus isolates is even more severe due to the clinical challenges in treating invasive infections in immunocompromised patients with respiratory conditions. Rapid detection and diagnosis are needed to reduce mortality in individuals with invasive aspergillosis-related infections and thus efficient identification impacts clinical success. The phenotypic array method was compared to conventional morphology and molecular identification on thirty-six Aspergillus species isolated from patients with respiratory infections at the Inkosi Albert Luthuli Hospital in Kwa-Zulu Natal. In addition, an antimicrobial array was also carried out to screen for possible novel antimicrobial compounds for treatment. Although traditional morphological techniques are useful, genetic identification was the most reliable, assigning 26 to Aspergillus fumigatus species, 8 Aspergillus niger, and 2 Aspergillus flavus including cryptic species of A. niger, A. tubingensis and A. welwitschiae. The phenotypic array technique was only able to identify isolates up to the genus level due to a lack of adequate reference clinical species in the database. However, this technique proved crucial in assessing a wide range of possible antimicrobial options after these isolates exhibited some resistance to azoles. Antifungal profiles of the thirty-six isolates on the routine azole voriconazole showed a resistance of 6%, with 61% having moderate susceptibility. All isolates resistant to the salvage therapy drug, posaconazole pose a serious concern. Significantly, A. niger was the only species resistant (25%) to voriconazole and has recently been reported as the species isolated from patients with COVID-19-associated pulmonary aspergillosis (CAPA). Phenotypic microarray showed that 83% of the isolates were susceptible to the 24 new compounds and novel compounds were identified for potentially effective combination treatment of fungal infections. This study also reports the first TR34/98 mutation in Aspergillus clinical isolates which is located in the cyp51A gene.

Funder

National Research Foundation

Durban University of Technology

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3