Assessment of the TRX2p-yEGFP Biosensor to Monitor the Redox Response of an Industrial Xylose-Fermenting Saccharomyces cerevisiae Strain during Propagation and Fermentation

Author:

Perruca Foncillas Raquel1ORCID,Sanchis Sebastiá Miguel2ORCID,Wallberg Ola2ORCID,Carlquist Magnus1,Gorwa-Grauslund Marie F.1ORCID

Affiliation:

1. Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden

2. Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden

Abstract

The commercial production of bioethanol from lignocellulosic biomass such as wheat straw requires utilizing a microorganism that can withstand all the stressors encountered in the process while fermenting all the sugars in the biomass. Therefore, it is essential to develop tools for monitoring and controlling the cellular fitness during both cell propagation and sugar fermentation to ethanol. In the present study, on-line flow cytometry was adopted to assess the response of the biosensor TRX2p-yEGFP for redox imbalance in an industrial xylose-fermenting strain of Saccharomyces cerevisiae during cell propagation and the following fermentation of wheat-straw hydrolysate. Rapid and transient induction of the sensor was recorded upon exposure to furfural and wheat straw hydrolysate containing up to 3.8 g/L furfural. During the fermentation step, the induction rate of the sensor was also found to correlate to the initial ethanol production rate, highlighting the relevance of redox monitoring and the potential of the presented tool to assess the ethanol production rate in hydrolysates. Three different propagation strategies were also compared, and it was confirmed that pre-exposure to hydrolysate during propagation remains the most efficient method for high ethanol productivity in the following wheat-straw hydrolysate fermentations.

Funder

Swedish National Energy Agency

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3