Affiliation:
1. Department of Botany, University of Granada, 18071 Granada, Spain
2. Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
3. Institut de Ciència i Tecnologia Ambientals (ICTA-UAB), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
Abstract
Aspergillus is a genus of saprophytic fungus widely distributed in the environment and associated with soil, decaying vegetation, or seeds. However, some species, such as A. fumigatus, are considered opportunistic pathogens in humans. Their conidia (asexual spores) and mycelia are associated with clinical diseases known as invasive aspergillosis (IA), mainly related to the respiratory tract, such as allergic asthma, allergic bronchopulmonary aspergillosis (ABPA), or hypersensitivity. However, they can also disseminate to other organs, particularly the central nervous system. Due to the dispersal mechanism of the conidia through the air, airborne fungal particle measurement should be used to prevent and control this mold. This study aims to measure the outdoor airborne concentration of Aspergillus conidia and the Asp f 1 allergen concentration in Bellaterra (Barcelona, Spain) during 2021 and 2022, and to compare their dynamics to improve the understanding of the biology of this genus and contribute to a better diagnosis, prevention, and therapeutic measures in the face of possible health problems. The results show that both particles were airborne nearly all year round, but their concentrations showed no correlation. Due to Asp f 1 not being present in the conidia itself but being detectable during their germination and in hyphal fragments, we report the relevance of the aero-immunological analysis as a methodology to detect the potential pathogenic hazard of this fungus.
Subject
Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献