Effects of Arbuscular Mycorrhizal Fungi on Robinia pseudoacacia L. Growing on Soils Contaminated with Heavy Metals

Author:

Zhao Liuhui12,Yang Tao3,Zhou Jinxing4ORCID,Peng Xiawei3

Affiliation:

1. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China

2. China Railway First Survey & Design Institute Group Co., Ltd., Xi’an 710043, China

3. College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China

4. School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China

Abstract

Arbuscular mycorrhizal fungi (AMF) have been shown to assist plants in increasing metal tolerance and accumulation in heavy metal (HM)-contaminated soils. Herein, a greenhouse pot experiment was conducted to assess the interactions of growth substrates (S1, S2, and S3, respectively) with various HM contamination and nutrient status sampling from a typical contaminated soil and tailings in Shuikoushan lead/zinc mining in Hunan province, China, and AMF inoculation obtained from plants in uncontaminated areas (Glomus mosseae, Glomus intraradices, and uninoculated, respectively) on the biomass and uptake of HMs and phosphorus (P) by the black locust plant (Robinia pseudoacacia L.). The results indicated that the inoculation with AMF significantly enhanced the mycorrhizal colonization of plant roots compared with the uninoculated treatments, and the colonization rates were found to be higher in S1 and S2 compared with S3, which were characterized with a higher nutrient availability and lead concentration. The biomass and heights of R. pseudoacacia were significantly increased by AMF inoculation in S1 and S2. Furthermore, AMF significantly increased the HM concentrations of the roots in S1 and S2 but decreased the HM concentrations in S3. Shoot HM concentrations varied in response to different AMF species and substrate types. Mycorrhizal colonization was found to be highly correlated with plant P concentrations and biomass in S1 and S2, but not in S3. Moreover, plant biomass was also significantly correlated with plant P concentrations in S1 and S2. Overall, these findings demonstrate the interactions of AMF inoculation and growth substrates on the phytoremediation potential of R. pseudoacacia and highlights the need to select optimal AMF isolates for their use in specific substrates for the remediation of HM-contaminated soil.

Funder

National Natural Science Foundation of China

China Railway First Survey and Design Institute Group Co., Ltd.

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3