Comparison of the Accuracy of Ground Reaction Force Component Estimation between Supervised Machine Learning and Deep Learning Methods Using Pressure Insoles

Author:

Kammoun Amal12ORCID,Ravier Philippe1ORCID,Buttelli Olivier13ORCID

Affiliation:

1. PRISME Laboratory, University of Orleans, 12 Rue de Blois, 45100 Orleans, France

2. Emka-Electronique Company, ZA du Patureau de la Grange, 41200 Pruniers-en-Sologne, France

3. Research Group Sport, Physical Activity, Rehabilitation and Movement for Performance and Health (SAPRèM), University of Orleans, 45100 Orleans, France

Abstract

The three Ground Reaction Force (GRF) components can be estimated using pressure insole sensors. In this paper, we compare the accuracy of estimating GRF components for both feet using six methods: three Deep Learning (DL) methods (Artificial Neural Network, Long Short-Term Memory, and Convolutional Neural Network) and three Supervised Machine Learning (SML) methods (Least Squares, Support Vector Regression, and Random Forest (RF)). Data were collected from nine subjects across six activities: normal and slow walking, static with and without carrying a load, and two Manual Material Handling activities. This study has two main contributions: first, the estimation of GRF components (Fx, Fy, and Fz) during the six activities, two of which have never been studied; second, the comparison of the accuracy of GRF component estimation between the six methods for each activity. RF provided the most accurate estimation for static situations, with mean RMSE values of RMSE_Fx = 1.65 N, RMSE_Fy = 1.35 N, and RMSE_Fz = 7.97 N for the mean absolute values measured by the force plate (reference) RMSE_Fx = 14.10 N, RMSE_Fy = 3.83 N, and RMSE_Fz = 397.45 N. In our study, we found that RF, an SML method, surpassed the experimented DL methods.

Funder

French “Association Nationale Recherche Technologie” (ANRT) and Emka-Electronique Company

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3