Abstract
Knowledge graph conflict resolution is a method to solve the knowledge conflict problem in constructing knowledge graphs. The existing methods ignore the time attributes of facts and the dynamic changes of the relationships between entities in knowledge graphs, which is liable to cause high error rates in dynamic knowledge graph construction. In this article, we propose a knowledge graph conflict resolution method, knowledge graph evolution algorithm based on deep learning (Kgedl), which can resolve facts confliction with high precision by combing time attributes, semantic embedding representations, and graph structure features. Kgedl first trains the semantic embedding vector through the relationships between entities. Then, the path embedding vector is trained from the graph structures of knowledge graphs, and the time attributes of entities are combined with the semantic and path embedding vectors. Finally, Kgedl uses a recurrent neural network to make the inconsistent facts appear in the dynamic evolution of the knowledge graph consistent. A large number of experiments on real datasets show that Kgedl outperforms the state-of-the-art methods. Especially, Kgedl achieves 23% higher performance than the classical method numerical Probabilistic Soft Logic (nPSL).in the metric HITS@10. Also, extensive experiments verified that our proposal possess better robustness by adding noise data.
Funder
Foundation of Henan Province Educational Committee
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference18 articles.
1. From data fusion to knowledge fusion
2. DBpedia—A large-scale, multilingual knowledge base extracted from Wikipedia;Lehmann;Semant. Web,2015
3. A survey on automatically constructed universal knowledge bases;Hossain;Sem. Web,2018
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献