Author:
Melesko Jaroslav,Novickij Vitalij
Abstract
There is strong support for formative assessment inclusion in learning processes, with the main emphasis on corrective feedback for students. However, traditional testing and Computer Adaptive Testing can be problematic to implement in the classroom. Paper based tests are logistically inconvenient and are hard to personalize, and thus must be longer to accurately assess every student in the classroom. Computer Adaptive Testing can mitigate these problems by making use of Multi-Dimensional Item Response Theory at cost of introducing several new problems, most problematic of which are the greater test creation complexity, because of the necessity of question pool calibration, and the debatable premise that different questions measure one common latent trait. In this paper a new approach of modelling formative assessment as a Multi-Armed bandit problem is proposed and solved using Upper-Confidence Bound algorithm. The method in combination with e-learning paradigm has the potential to mitigate such problems as question item calibration and lengthy tests, while providing accurate formative assessment feedback for students. A number of simulation and empirical data experiments (with 104 students) are carried out to explore and measure the potential of this application with positive results.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献