An Enhanced Feature Pyramid Object Detection Network for Autonomous Driving

Author:

Wu YutianORCID,Tang Shuming,Zhang Shuwei,Ogai Harutoshi

Abstract

Feature Pyramid Network (FPN) builds a high-level semantic feature pyramid and detects objects of different scales in corresponding pyramid levels. Usually, features within the same pyramid levels have the same weight for subsequent object detection, which ignores the feature requirements of different scale objects. As we know, for most detection networks, it is hard to detect small objects and occluded objects because there is little information to exploit. To solve the above problems, we propose an Enhanced Feature Pyramid Object Detection Network (EFPN), which innovatively constructs an enhanced feature extraction subnet and adaptive parallel detection subnet. Enhanced feature extraction subnet introduces Feature Weight Module (FWM) to enhance pyramid features by weighting the fusion feature map. Adaptive parallel detection subnet introduces Adaptive Context Expansion (ACE) and Parallel Detection Branch (PDB). ACE aims to generate the features of adaptively enlarged object context region and original region. PDB predicts classification and regression results separately with the two features. Experiments showed that EFPN outperforms FPN in detection accuracy on Pascal VOC and KITTI datasets. Furthermore, the performance of EFPN meets the real-time requirements of autonomous driving systems.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference27 articles.

1. Very deep convolutional networks for large-scale image recognition;Simonyan;arXiv,2014

2. Selective Search for Object Recognition

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3