Impact of Aeration on the Removal of Organic Matter and Nitrogen Compounds in Constructed Wetlands Treating the Liquid Fraction of Piggery Manure

Author:

Donoso Natalia,van Oirschot Dion,Kumar Biswas Jayanta,Michels Evi,Meers Erik

Abstract

The increasing demand for sustainable, robust and cost-efficient wastewater treatment techniques strengthen the implementation of constructed wetlands (CWs) in the agricultural sector. In countries like Belgium (Flanders), the compliance of strict water quality standards and surface area requirements have hindered considerably their application. New wetland designs such as aerated CWs, could help to overcome these challenges. This study evaluated the capacity of artificially aerated mesocosm systems to decrease chemical oxygen demand (COD) concentrations below the 125 mgO2/L limit imposed on installations treating animal manure. The treatment of this high-strength wastewater has been slightly studied via aerated CWs. A three-stage experiment investigated the effect of constant, intermittent and non-aeration regimes on: ammonium volatilisation, the evolution of organic and nitrogen compounds concentrations, and denitrification. The results were assessed through a mixed modelling procedure using SAS 9.4 software. A COD removal between 65% and 58% in constantly and intermittent aerated systems, versus 27% COD removal in the non-aerated system indicated the effectiveness of aeration. However, a dissimilarity was encountered in the removal of nitrogen compounds, resulting in an 82% decrease of nitrate concentrations in the non-aerated system, versus 0.5% and 11% in the aerated ones. Based on the results, this experimental set-up adjusted to field operational conditions can prove that aerated CWs can treat the liquid fraction of piggery manure.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3