Abstract
Although the face detection problem has been studied for decades, searching tiny faces in the whole image is still a challenging task, especially in low-resolution images. Traditional face detection methods are based on hand-crafted features, but the features of tiny faces are different from those of normal-sized faces, and thus the detection robustness cannot be guaranteed. In order to alleviate the problem in existing methods, we propose a pre-identification mechanism and a cascaded detector (PMCD) for tiny-face detection. This pre-identification mechanism can greatly reduce background and other irrelevant information. The cascade detector is designed with two stages of deep convolutional neural network (CNN) to detect tiny faces in a coarse-to-fine manner, i.e., the face-area candidates are pre-identified as region of interest (RoI) based on a real-time pedestrian detector and the pre-identification mechanism, the set of RoI candidates is the input of the second sub-network instead of the whole image. Benefiting from the above mechanism, the second sub-network is designed as a shallow network which can keep high accuracy and real-time performance. The accuracy of PMCD is at least 4% higher than the other state-of-the-art methods on detecting tiny faces, while keeping real-time performance.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangxi Province
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献