3D Numerical Simulation of Rock Cutting of an Innovative Non-Planar Face PDC Cutter and Experimental Verification

Author:

Liu Jianxun,Zheng Hualin,Kuang Yuchun,Xie Han,Qin Chao

Abstract

The low rock breaking efficiency of conventional polycrystalline diamond compact (PDC) bits in hard abrasive formations prompts the development of PDC cutting elements from the planar structure to the non-planar structure. As an innovative non-planar cutter, the design and research of the three-ridged diamond element (3-RDE) cutter is still in its infancy, and its rock breaking mechanism and laws are not yet clear. In this paper, a three-dimensional (3D) finite element model of dynamic rock breaking with 3-RDE cutter has been established. The accuracy of the numerical model was verified by experimental data. Then, the difference of rock breaking mechanism between 3-RDE cutter and conventional cutter was studied. The effects of back-rake angle, cutting depth, rotational angle, and rock properties on rock breaking efficiency were also analyzed. The results show that, unlike the conventional PDC shear rock breaking cutter, the 3-RDE cutter breaks rock mainly by crushing and shearing, and the rock breaking efficiency is higher. A small back-rake angle and reasonable cutting depth contribute to improving the rock breaking efficiency; the existence of rotational angle is not conductive to the rock breaking. The field application shows that compared with the conventional cutter, the 3-RDE cutter is easier to penetrate into the formation, and is more stable with less torque required. The research results can be of benefit to the design and manufacture of 3-RDE PDC bits.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3