Tunable Optoelectronic Chromatic Dispersion Compensation Based on Machine Learning for Short-Reach Transmission

Author:

Ranzini Stenio M.ORCID,Da Ros FrancescoORCID,Bülow Henning,Zibar Darko

Abstract

In this paper, a machine learning-based tunable optical-digital signal processor is demonstrated for a short-reach optical communication system. The effect of fiber chromatic dispersion after square-law detection is mitigated using a hybrid structure, which shares the complexity between the optical and the digital domain. The optical part mitigates the chromatic dispersion by slicing the signal into small sub-bands and delaying them accordingly, before regrouping the signal again. The optimal delay is calculated in each scenario to minimize the bit error rate. The digital part is a nonlinear equalizer based on a neural network. The results are analyzed in terms of signal-to-noise penalty at the KP4 forward error correction threshold. The penalty is calculated with respect to a back-to-back transmission without equalization. Considering 32 GBd transmission and 0 dB penalty, the proposed hybrid solution shows chromatic dispersion mitigation up to 200 ps/nm (12 km of equivalent standard single-mode fiber length) for stage 1 of the hybrid module and roughly double for the second stage. A simplified version of the optical module is demonstrated with an approximated 1.5 dB penalty compared to the complete two-stage hybrid module. Chromatic dispersion tolerance for a fixed optical structure and a simpler configuration of the nonlinear equalizer is also investigated.

Funder

Horizon 2020

European Research Council

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3