Compression of Biomass Substances—A Study on Springback Effects and Color Formation in Pellet Manufacture

Author:

Frodeson StefanORCID,Lindén Pär,Henriksson Gunnar,Berghel JonasORCID

Abstract

In order to increase the use of a variated raw material base for pellet production with a maintained density level, knowledge of the biomaterials’ ability to counteract any springback effects is essential. In this study, the springback effects were investigated for single press produced pellets from cellulose, hemicelluloses, pectin, and two woods at different moisture contents. The change in pellet coloring was also tested through a spectrophotometer for both xylan and carboxymethyl cellulose (CMC) pellets. The results show that the density of xylan pellets is much higher than glucomannan, for both green and cured pellets, and that the length of the pellets, as well as springback contribution, differ between the hemicelluloses. The study also presents results showing that both xylan and CMC pellets have a mutually identical spectrum and that the changes in the structure of xylan are not only related to moisture content, but are also pressure-related. The study also postulates that the color difference of the xylan pellets is a result of physical changes in the structure, as opposed to being of a chemical nature.

Funder

Swedish Agency for Economic and Regional Growth

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference41 articles.

1. Recent developments in biomass pelletization—A Review;Stelte;BioResources,2012

2. Pelletizing Pure Biomass Substances to Investigate the Mechanical Properties and Bonding Mechanisms

3. Importance of temperature, moisture content, and species for the conversion process of wood residues into fuel pellets;Nielsen;Wood Fiber Sci.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3