Phytochemical Composition, Anti-Inflammatory Property, and Anti-Atopic Effect of Chaetomorpha linum Extract

Author:

Frusciante Luisa1ORCID,Geminiani Michela12ORCID,Trezza Alfonso1,Olmastroni Tommaso1ORCID,Mastroeni Pierfrancesco1ORCID,Salvini Laura3,Lamponi Stefania12ORCID,Bernini Andrea1ORCID,Grasso Daniela1,Dreassi Elena1ORCID,Spiga Ottavia124ORCID,Santucci Annalisa124ORCID

Affiliation:

1. Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy

2. SienabioACTIVE, Università di Siena, Via Aldo Moro, 53100 Siena, Italy

3. Fondazione Toscana Life Sciences, Strada del Petriccio e Belriguardo, 53100 Siena, Italy

4. Advanced Robotics and Enabling Digital TEchnologies & Systems 4.0 (ARTES 4.0), Viale Rinaldo Piaggio, 34, 56025 Pontedera, Italy

Abstract

Utilizing plant-based resources, particularly their by-products, aligns with sustainability principles and circular bioeconomy, contributing to environmental preservation. The therapeutic potential of plant extracts is garnering increasing interest, and this study aimed to demonstrate promising outcomes from an extract obtained from an underutilized plant waste. Chaetomorpha linum, an invasive macroalga found in the Orbetello Lagoon, thrives in eutrophic conditions, forming persistent mats covering approximately 400 hectares since 2005. The biomass of C. linum undergoes mechanical harvesting and is treated as waste, requiring significant human efforts and economic resources—A critical concern for municipalities. Despite posing challenges to local ecosystems, the study identified C. linum as a natural source of bioactive metabolites. Phytochemical characterization revealed lipids, amino acids, and other compounds with potential anti-inflammatory activity in C. linum extract. In vitro assays with LPS-stimulated RAW 264.7 and TNF-α/IFN-γ-stimulated HaCaT cells showed the extract inhibited reactive oxygen species (ROS), nitric oxide (NO), and prostaglandin E2 (PGE2) productions, and reduced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expressions via NF-κB nuclear translocation, in RAW 264.7 cells. It also reduced chemokines (TARC/CCL17, RANTES/CCL5, MCP-1/CCL2, and IL-8) and the cytokine IL-1β production in HaCaT cells, suggesting potential as a therapeutic candidate for chronic diseases like atopic dermatitis. Finally, in silico studies indicated palmitic acid as a significant contributor to the observed effect. This research not only uncovered the untapped potential of C. linum but also laid the foundation for its integration into the circular bioeconomy, promoting sustainable practices, and innovative applications across various industries.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3