An Improved System for Utilizing Low-Temperature Waste Heat of Flue Gas from Coal-Fired Power Plants

Author:

Huang Shengwei,Li ChengzhouORCID,Tan Tianyu,Fu Peng,Xu Gang,Yang Yongping

Abstract

In this paper, an improved system to efficiently utilize the low-temperature waste heat from the flue gas of coal-fired power plants is proposed based on heat cascade theory. The essence of the proposed system is that the waste heat of exhausted flue gas is not only used to preheat air for assisting coal combustion as usual but also to heat up feedwater and for low-pressure steam extraction. Air preheating is performed by both the exhaust flue gas in the boiler island and the low-pressure steam extraction in the turbine island; thereby part of the flue gas heat originally exchanged in the air preheater can be saved and introduced to heat the feedwater and the high-temperature condensed water. Consequently, part of the high-pressure steam is saved for further expansion in the steam turbine, which results in additional net power output. Based on the design data of a typical 1000 MW ultra-supercritical coal-fired power plant in China, an in-depth analysis of the energy-saving characteristics of the improved waste heat utilization system (WHUS) and the conventional WHUS is conducted. When the improved WHUS is adopted in a typical 1000 MW unit, net power output increases by 19.51 MW, exergy efficiency improves to 45.46%, and net annual revenue reaches USD 4.741 million while for the conventional WHUS, these performance parameters are 5.83 MW, 44.80% and USD 1.244 million, respectively. The research described in this paper provides a feasible energy-saving option for coal-fired power plants.

Funder

the National Major Fundamental Research Program of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference37 articles.

1. Coal use for power generation in China

2. Overall review of peak shaving for coal-fired power units in China

3. Situation and prospect of energy consumption for China’s thermal power generation;Yang;Proc. Chin. Soc. Electric. Eng.,2013

4. Performance analysis of US coal-fired power plants by measuring three DEA efficiencies

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3