Abstract
Mechanical unloading-related bone loss adversely harms astronauts’ health. Nevertheless, the specific molecular basis underlying the phenomenon has not been completely elucidated. Although the bone microvasculature contributes significantly to bone homeostasis, the pathophysiological role of microvascular endothelial cells (MVECs) in bone loss induced by mechanical unloading is not apparent. Here, we discovered that MC3T3-E1 cells could take up exosomes produced by MVECs under clinorotation-unloading conditions (Clino Exos), which then prevented MC3T3-E1 cells from differentiating into mature osteoblasts. Moreover, miR-92b-3p was found to be highly expressed in both unloaded MVECs and derived exosomes. Further experiments demonstrated that miR-92b-3p was transferred into MC3T3-E1 cells by exosomes, resulting in the suppression of osteogenic differentiation, and that encapsulating miR-92b-3p inhibitor into the Clino Exos blocked their inhibitory effects. Furthermore, miR-92b-3p targeted ELK4 and the expression of ELK4 was lessened when cocultured with Clino Exos. The inhibitor-92b-3p-promoted osteoblast differentiation was partially reduced by siRNA-ELK4. Exosomal miR-92b-3p secreted from MVECs under mechanical unloading has been shown for the first time to partially attenuate the function of osteoblasts through downregulation of ELK4, suggesting a potential strategy to protect against the mechanical unloading-induced bone loss and disuse osteoporosis.
Funder
National Natural Science Foundation of China
Aerospace Medical Experiment Project of China Space Station
Innovation Capability Support Program of Shaanxi
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献