The Role of the Catalyst on the Reactivity and Mechanism in the Diels–Alder Cycloaddition Step of the Povarov Reaction for the Synthesis of a Biological Active Quinoline Derivative: Experimental and Theoretical Investigations

Author:

Lamri Soumia,Heddam Affaf,Kara Meriem,Yahia Wassila,Khorief Nacereddine AbdelmalekORCID

Abstract

An experimental and theoretical study of the reactivity and mechanism of the non-catalyzed and catalyzed Povarov reaction for the preparation of a 4-ethoxy-2,3,4,4a-tetrahydro-2-phenylquinoline as a biological active quinoline derivative has been performed. The optimization of experimental conditions indicate that the use of a catalyst, namely Lewis acid with an electron-releasing group, creates the best experimental conditions for this kind of reaction. The chemical structure was characterized by the usual spectroscopic methods. The prepared quinoline derivative has been also tested in vitro for antibacterial activity, which displays moderate inhibitory activity against both Escherichia coli and Staphylococcus aureus. The antioxidant activity was investigated in vitro by evaluating their reaction with 1,1-diphenyl-2-picrylhydrazyl DPPH radical, which reveals high reactivity. The computational study was performed on the Diels–Alder step of the Povarov reaction using a B3LYP/6-31G(d,p) level of theory. The conceptual DFT reactivity indices explain well the reactivity and the meta regioselectivity experimentally observed. Both catalysts enhance the reactivity of the imine, favoring the formation of the meta regioisomers with a low activation energy, and they change the mechanism to highly synchronous for the Lewis acid and to stepwise for the Brønsted acid. The reaction of imine with allyl alcohol does not give any product, which requires high activation energy.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3