Simulating Rainfall Interception by Caatinga Vegetation Using the Gash Model Parametrized on Daily and Seasonal Bases

Author:

Lopes Daniela C.ORCID,Steidle Neto Antonio JoséORCID,Silva Thieres G. F.ORCID,Souza Luciana S. B.,Zolnier Sérgio,Souza Carlos A. A.

Abstract

Rainfall partitioning by trees is an important hydrological process in the contexts of water resource management and climate change. It becomes even more complex where vegetation is sparse and in vulnerable natural systems, such as the Caatinga domain. Rainfall interception modelling allows extrapolating experimental results both in time and space, helping to better understand this hydrological process and contributing as a prediction tool for forest managers. In this work, the Gash model was applied in two ways of parameterization. One was the parameterization on a daily basis and another on a seasonal basis. They were validated, improving the description of rainfall partitioning by tree species of Caatinga dry tropical forest already reported in the scientific literature and allowing a detailed evaluation of the influence of rainfall depth and event intensity on rainfall partitioning associated with these species. Very small (0.0–5.0 mm) and low-intensity (0–2.5 mm h−1) events were significantly more frequent during the dry season. Both model approaches resulted in good predictions, with absence of constant and systematic errors during simulations. The sparse Gash model parametrized on a daily basis performed slightly better, reaching maximum cumulative mean error of 9.8%, while, for the seasonal parametrization, this value was 11.5%. Seasonal model predictions were also the most sensitive to canopy and climatic parameters.

Funder

Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3