Abstract
The biosorption behaviour of arsenic(V) and cadmium(II) ions by unmodified and five types of chemically modified Chlorella vulgaris and Spirulina platensis was investigated. The biosorption rates of As(V) and Cd(II) in binary metal solutions were lower than those in sole metal systems, which exhibited a competition between As(V) and Cd(II) ions to occupy the active sites of the adsorbent. Among the five chemical reagents, NaCl and ZnCl2 were the most suitable modifiers for improving the biosorption performance of C. vulgaris and S. platensis, respectively. The maximum biosorption capacities of As(V) and Cd(II) were: (a) 20.9 and 1.2 mg/g, respectively, for C. vulgaris modified with NaCl; (b) 24.8 and 29.4 mg/g, respectively, for S. platensis modified with ZnCl2, which were much higher than those using other chemically modifying methods. The pseudo-second-order kinetic model fitted well with all the biosorption processes. The SEM analysis revealed that the modification changed the surface morphologies and enhanced the porosity of the algae biomass. The FTIR analysis established the presence of diverse groups of compounds that were largely hydroxyl, carboxylate, amino, and amide groups on the adsorbents that contributed significantly to the upregulated biosorption. This work showed the potential application of chemically modified C. vulgaris and S. platensis biomasses to effectively remove both from water.
Funder
Natural Science Foundation of Hubei Province
Natural Science Foundation of Guangdong Province
National Natural Science Foundation of China
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献