Research on Self-Supervised Building Information Extraction with High-Resolution Remote Sensing Images for Photovoltaic Potential Evaluation

Author:

Chen De-YueORCID,Peng LingORCID,Zhang Wen-Yue,Wang Yin-Da,Yang Li-Na

Abstract

With the rapid development of the energy industry and the growth of the global energy demand in recent years, the development of the photovoltaic industry has become increasingly significant. However, the development of the PV industry is constrained by high land costs, and land in central cities and industrial areas is often very expensive and unsuitable for the installation of PV equipment in large areas. With this background knowledge, the key to evaluating the PV potential is by counting the rooftop information of buildings, and an ideal solution for extracting building rooftop information is from remote sensing satellite images using the deep learning method; however, the deep learning method often requires large-scale labeled samples, and the labeling of remote sensing images is often time-consuming and expensive. To reduce the burden of data labeling, models trained on large datasets can be used as pre-trained models (e.g., ImageNet) to provide prior knowledge for training. However, most of the existing pre-trained model parameters are not suitable for direct transfer to remote sensing tasks. In this paper, we design a pseudo-label-guided self-supervised learning (PGSSL) semantic segmentation network structure based on high-resolution remote sensing images to extract building information. The pseudo-label-guided learning method allows the feature results extracted by the pretext task to be more applicable to the target task and ultimately improves segmentation accuracy. Our proposed method achieves better results than current contrastive learning methods in most experiments and uses only about 20–50% of the labeled data to achieve comparable performance with random initialization. In addition, a more accurate statistical method for building density distribution is designed based on the semantic segmentation results. This method addresses the last step of the extraction results oriented to the PV potential assessment, and this paper is validated in Beijing, China, to demonstrate the effectiveness of the proposed method.

Funder

Global Energy Internet Group Co., Ltd. Technology Project: Building Photovoltaic Power Generation Potential Evaluation Method and Empirical Research

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3