A Spatiotemporal Atmospheric Refraction Correction Method for Improving the Geolocation Accuracy of High-Resolution Remote Sensing Images

Author:

Peng Xiaohong,Huang Wenwen,Li Xiaoyan,Yang Lin,Chen FanshengORCID

Abstract

Atmospheric refraction is one of the most significant factors that affect the geolocation accuracy of high-resolution remote sensing images. However, most of the current atmospheric refraction correction methods based on empirical data neglect the spatiotemporal variation of pressure, temperature, and humidity of the atmosphere, inevitably resulting in poor geometric positioning accuracy. Therefore, in terms of the problems mentioned above, this study proposed a spatiotemporal atmospheric refraction correction method (SARCM) based on global measured data to avoid the uncertainty of traditional empirical models. Initially, the atmosphere was stratified into 42 layers according to their pressure property, and each layer was divided into 1,042,560 grid cells with intervals of 0.25 longitude and 0.25 latitude. Then, the atmospheric refractive index of each grid in the imaging region was accurately calculated using the high-precision Ciddor formula, and the result was interpolated using three splines. Subsequently, according to the rigorous geometric positioning model, the line-of-sight of each pixel and the viewing zenith angle outside the atmosphere in WGS84 were derived to provide input for atmospheric refraction correction. Finally, the coordinates of the ground control points were corrected with the calculated atmospheric refractive index and Snell’s law. The experimental results showed that the proposed SARCM could effectively improve the positioning accuracy of the image with a large viewing zenith angle, and especially, the improvement percentage for a viewing zenith angle of 34.2426° in the x-direction was 99.5%. Moreover, the atmospheric refraction correction result of the SARCM was better than that of the primary state-of-the-art methods.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3