Distributed Scatterer Processing Based on Binary Partition Trees with Multi-Baseline PolInSAR Data

Author:

Wang GuanyaORCID,Deng Kailiang,Chen Qi,Li ZhiweiORCID,Gao HanORCID,Hu JunORCID,Xiang DeliangORCID

Abstract

Distributed scatterers (DSs) are necessary to increase point density in multi-temporal InSAR (MT-InSAR) monitoring. The identification of homogeneous pixels (HPs) is the first and key step for DS processing to overcome the low signal-to-noise ratio condition. Since multi-polarization data are good at describing geometrical structures and dielectric properties of ground objects, they have been applied for HP identification. However, polarimetric information is not enough for identifying areas with similar ground objects but different deformation. We propose a novel DS preprocessing algorithm based on polarimetric interferometric homogeneous pixel (PIHP) identification. Firstly, a novel Polarimetric InSAR (PolInSAR) similarity that combines polarimetric intensity, interferometric coherence, and phase is proposed, which is readily available in multi-baseline and multi-polarization data and flexible by controlling weighting factors. Secondly, based on the binary partition tree (BPT) framework, object-orientated multi-scale PIHP identification is achieved, which is suitable for complex deformation scenes. Tested with simulated quad-polarization data, our method shows improvement in phase quality and point density, especially in the deformed areas, compared with the traditional HP identification method based on the polarimetric homogeneity (PolHom) test and the method with ground object type map. Tested with 30 quad-polarization Radarsat-2 images over Kilauea Volcano, the point density of our method is three times higher than that of the PolHom test in vegetation areas. Our method is proven to be more sensitive and mechanically more advanced to homogeneous pixels identification than the traditional ones, which is helpful for phase optimization, spatial enlargement of monitoring points, and stability of the MT-InSAR algorithm.

Funder

National Science Fund for Distinguished Young Scholars

National Natural Science Foundation of China

Hunan Key Laboratory of remote sensing of ecological environment in Dongting Lake Area

Fundamental Research Funds for the Central Universities of Central South University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Despeckling Multitemporal Polarimetric SAR Data Based on Tensor Decomposition;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3