Comparison of Mean Dynamic Topography Modeling from Multivariate Objective Analysis and Rigorous Least Squares Method

Author:

Wu YihaoORCID,He XiufengORCID,Huang Jia,Shi Hongkai,Wang HaihongORCID,Wu YunlongORCID,Ding YuanORCID

Abstract

Filtering methods are usually used to combine the mean sea surface (MSS) and geoid (computable by global geopotential model (GGM)) into a common subspace, to model mean dynamic topography (MDT), which may lead to signal leakage and distortion problems. The use of the rigorous least squares (LS) method and multivariate objective analysis (MOA) alleviates these problems, and the derived MDTs from these two methods show better performance than MDTs derived from filtering methods. However, the advantages and disadvantages of these two methods have not been evaluated, and no direct comparison has yet been conducted between these two approaches regarding the performances in MDT recovery. In this study, we compare the performances of the MOA method with the LS method, providing information with respect to the usability of different methods in MDT modeling over regions with heterogeneous ocean states and hydrological conditions. We combined a recently published mean sea surface called DTU21MSS, and a satellite-only GGM named GO_CONS_GCF_2_DIR_R6, for MDT computation over four typical study areas. The results showed that the MDTs derived from the LS method outperformed the MOA method, especially over coastal regions and ocean current areas. The root mean square (RMS) of the discrepancies between the LS-derived MDT and the ocean reanalysis data was lower than the RMS of the discrepancies computed from the MOA method, by a magnitude of 1–2 cm. The formal error of the MDT estimated by the LS method was more reasonable than that derived from the MOA method. Moreover, the geostrophic velocities calculated by the LS-derived MDT were more consistent with buoy data than those calculated by the MOA-derived solution, by a magnitude of approximately 1 cm/s. The reason can be attributed to the fact that the LS method forms the design matrix segmentally, based on the error characteristics of the GGM, and suppresses high-frequency noise by applying constraints in different frequency bands, which improves the quality of the computed MDT. Our studies highlight the superiority of the LS-derived method versus the MOA method in MDT modeling.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province, China

Fundamental Research Funds for the Central Universities

State Scholarship Fund from Chinese Scholarship Council

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3