Abstract
Potential evapotranspiration (PET) is the capacity of the sub-surface evapotranspiration process, which is determined by weather and climate conditions. As an important component of the surface energy balance and hydrological cycle, PET determines hydrothermal transport in surface ecosystems and is an important factor in regional water resource evaluation, water use efficiency, and drought prediction. Most of the existing studies have focused on the impact of PET on the ecological environment and regional climate, providing limited information on the characteristics of the regional distribution of potential evapotranspiration itself and the associated drivers. In this study, we use the Penman-Monteith (P–M) model to calculate the PET in Akmola Oblast, combined with relevant climate data, partial correlation analysis, and structural equation modelling (SEM) to investigate the spatial and temporal distribution characteristics of PET in the study area and its driving factors, as well as the influence of meteorological activity on PET after the implementation of the Green Ring Project in the capital area of Kazakhstan. The results of the study show that: (1) The PET in Akmola State presented a decreasing trend from 1991 to 2021, with a multi-year average value of 835.87 mm. There is large heterogeneity in the spatial distribution of PET, being significantly higher in the southwestern and northeastern regions of the study area than in the central region. (2) Simple and partial correlation analyses indicate that most of the correlations between meteorological and PET were significant, with strong spatial heterogeneity in the number of biased relationships between different meteorological activity and PET. The spatial characteristics of the correlations between PET and Srad (Solar radiation), VS (wind speed), and MAT (Mean annual temperature) were similar, with the strongest correlations observed in the southwestern part of Akmola State. Furthermore, the spatial distribution of the correlations between PET and SWC (soil water content) and ST (soil temperature) was similar, with stronger correlations in the central part of the study area than elsewhere. (3) The SEM demonstrated that the main drivers of PET change across the study area are Srad (0.59) and VS (0.37). In the metropolitan area, MAP (mean annual precipitation) is also a major driver of PET change, due to the implementation of the Green Ring Project, which has increased vegetation cover and improved the local environment. The results of this study highlight the impact of climate change on PET in Akmola Oblast, Kazakhstan, contributing to a better understanding of PET evolution and providing guidance for water management planning.
Funder
Xinjiang Institute of Ecology and Geography
Subject
General Earth and Planetary Sciences