A Novel Water Index Fusing SAR and Optical Imagery (SOWI)

Author:

Tian Bin,Zhang FangfangORCID,Lang FengkaiORCID,Wang Chen,Wang Chao,Wang Shenglei,Li JunshengORCID

Abstract

Continuous and accurate acquisitions of surface water distribution are important for water resources evaluation, especially high-precision flood monitoring. During surface water extraction, optical imagery is strongly affected by clouds, while synthetic aperture radar (SAR) imagery is easily influenced by numerous physical factors; thus, the water extraction method based on single-sensor imagery cannot obtain high-precision water range under multiple scenarios. Here, we integrated the radar backscattering coefficient of ground objects into the Normalized Difference Water Index to construct a novel SAR and Optical Imagery Water Index (SOWI), and the water ranges of five study areas were extracted. We compared two previous automatic extraction methods based on single-sensor imagery and evaluated the accuracy of the extraction results. Compared with using optical and SAR imagery alone, the accuracy of all five regions was improved by up to 1–18%. The fusion-derived products resulted in user accuracies ranging 95–99% and Kappa coefficients varying by 85–97%. SOWI was then applied to monitor the 2021 heavy rainfall-induced Henan Province flood disaster, obtaining a time-series change diagram of flood inundation range. Our results verify SOWI’s continuous high-precision monitoring capability to accurately identify waterbodies beneath clouds and algal blooms. By reducing random noise, the defects of SAR are improved and the roughness of water boundaries is overcome. SOWI is suitable for high-precision water extraction in myriad scenarios, and has great potential for use in flood disaster monitoring and water resources statistics.

Funder

The Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extracting an accurate river network: Stream burning re-revisited;Remote Sensing of Environment;2024-10

2. Macro-Scale Spatial Assessment of Flood Inundated Areas using Multi-Temporal Sentinel-1 SAR Images;2023 IEEE India Geoscience and Remote Sensing Symposium (InGARSS);2023-12-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3