Identifying Critical Infrastructure in Imagery Data Using Explainable Convolutional Neural Networks

Author:

Elliott Shiloh N.,Shields Ashley J. B.ORCID,Klaehn Elizabeth M.,Tien IrisORCID

Abstract

To date, no method utilizing satellite imagery exists for detailing the locations and functions of critical infrastructure across the United States, making response to natural disasters and other events challenging due to complex infrastructural interdependencies. This paper presents a repeatable, transferable, and explainable method for critical infrastructure analysis and implementation of a robust model for critical infrastructure detection in satellite imagery. This model consists of a DenseNet-161 convolutional neural network, pretrained with the ImageNet database. The model was provided additional training with a custom dataset, containing nine infrastructure classes. The resultant analysis achieved an overall accuracy of 90%, with the highest accuracy for airports (97%), hydroelectric dams (96%), solar farms (94%), substations (91%), potable water tanks (93%), and hospitals (93%). Critical infrastructure types with relatively low accuracy are likely influenced by data commonality between similar infrastructure components for petroleum terminals (86%), water treatment plants (78%), and natural gas generation (78%). Local interpretable model-agnostic explanations (LIME) was integrated into the overall modeling pipeline to establish trust for users in critical infrastructure applications. The results demonstrate the effectiveness of a convolutional neural network approach for critical infrastructure identification, with higher than 90% accuracy in identifying six of the critical infrastructure facility types.

Funder

Idaho National Laboratory

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3