A Methodology for Georeferencing and Mosaicking Corona Imagery in Semi-Arid Environments

Author:

Iacone Brooke,Allington Ginger R. H.ORCID,Engstrom RyanORCID

Abstract

High-resolution Corona imagery acquired by the United States through spy missions in the 1960s presents an opportunity to gain critical insight into historic land cover conditions and expand the timeline of available data for land cover change analyses, particularly in regions such as Northern China where data from that era are scarce. Corona imagery requires time-intensive pre-processing, and the existing literature lacks the necessary detail required to replicate these processes easily. This is particularly true in landscapes where dynamic physical processes, such as aeolian desertification, reshape topography over time or regions with few persistent features for use in geo-referencing. In this study, we present a workflow for georeferencing Corona imagery in a highly desertified landscape that contained mobile dunes, shifting vegetation cover, and a few reference points. We geo-referenced four Corona images from Inner Mongolia, China using uniquely derived ground control points and Landsat TM imagery with an overall accuracy of 11.77 m, and the workflow is documented in sufficient detail for replication in similar environments.

Funder

George Washington University Facilitating Fund

GWU Center for Urban and Environmental Research

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3