Research on Identification Method of Wear Degradation of External Gear Pump Based on Flow Field Analysis

Author:

Guo RuiORCID,Li Yongtao,Shi Yue,Li Hucheng,Zhao Jingyi,Gao Dianrong

Abstract

As a kind of hydraulic power component, the external gear pump determines the performance of the entire hydraulic system. The degradation state of gear pumps can be monitored by sensors. Based on the accelerated life test (ALT), this paper proposes a method to identify the wear degradation state of external gear pumps based on flow field analysis. Firstly, the external gear pump is theoretically analyzed. Secondly, dynamic grid technology is used to simulate the internal flow field of the gear pump in detail. Finally, the theoretical and simulation results are verified by the ALT. The results show that this method can effectively identify the wear degradation status of four sample pumps. The results of the work not only provide a solution to the research on the wear degradation of external gear pumps, but also provide strong technical support for the predictive maintenance of hydraulic pumps.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference34 articles.

1. Morphological Undecimated Wavelet Decomposition Fusion Algorithm and Its Application on Fault Feature Extraction of Hydraulic Pump;Sun;Trans. NJ Univ. Aer. Astr.,2015

2. A novel method based upon modified composite spectrum and relative entropy for degradation feature extraction of hydraulic pump

3. Performance Reliability Analysis of a Piston Pump Affected by Random Degradation

4. Degradation state identification method of hydraulic pump based on improved MF-DFA and SSM-FCM;Tian;Chin. J. Sci. Instrum.,2016

5. Vibration-based fault diagnosis of pump using fuzzy technique

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3