Matrix Suction Evaluation of Soil-Rock Mixture Based on Electrical Resistivity

Author:

Wang KuiORCID,Xia ZhengtingORCID,Li Xue

Abstract

The soil-rock mixture is an important construction material in practical engineering. Its physical properties, especially soil-water properties, are particularly important for on-site construction, while both matrix suction and electrical resistivity in unsaturated soils depend on the magnitude of moisture content, and a certain relationship can be established between the two physical quantities. Therefore, in this paper, we designed a matrix suction–electrical resistivity synergistic test device and conducted indoor physical tests on common soil-rock mixtures in the Chongqing area to investigate the correlation between matrix suction and electrical resistivity in soil-rock mixtures. The electrical resistivity comprehensive parameter was used to represent the electrical resistivity characteristics of rock and soil. Based on the experimental results, a matrix suction–electrical resistivity comprehensive parameter model applicable to soil-rock mixtures was established, and the sensitivity analysis of the model parameters was carried out. The results show that the soil-water characteristic curve of the soil-rock mixture has a double-step shape, and the shape of the curve under different compaction degrees is similar. The matrix suction and mass moisture content of the soil-rock mixture were positively correlated with the compaction degree. There was good consistency between the experimentally measured matrix suction and the matrix suction reflected by the electrical resistivity in the model. Moreover, the model curve was able to reflect the drainage process of pores in the soil for soil–stone mixtures with a bimodal pore size distribution, thus providing a new way to measure the matrix suction of unsaturated soil–stone mixtures in practical engineering.

Funder

National Natural Science Foundation of China

Chongqing Research Program of Basic Research and Frontier Technology

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3