Electrochemical Treatment of Effluent for the Removal of Contaminants of Emergent Concern and Culturable Microorganisms

Author:

Dionísio Joana,Gonçalves Cristiana,Guedes PaulaORCID,Ribeiro AlexandraORCID,Couto Nazaré

Abstract

The present work aims to study the electrochemical (EC) process applied for the removal of contaminants of emergent concern (CECs) from wastewater after secondary treatment and the effect of the process on the total culturable microorganisms. The EC experiments were performed in a cylindrical open reactor with 500 mL of effluent, and a fixed current density of 8 mA/cm² was applied through mixed metal oxide electrodes. The experiments were conducted in different sets. In the first round (Set 1), the effluent sample was spiked with three CECs (200 ppb each): caffeine (CAF), carbamazepine (CBZ), and oxybenzone (OXY). For the best treatment period, 6 h, electrodegradation rates ranged from 41 ± 7% for CAF to 95 ± 6% for OXY, with an 87% removal of total culturable microorganisms. In the second round (Set 2), aiming to assess EC process efficiency in a more complex CEC mixture, the effluent was spiked with six more CECs (200 ppb each): diclofenac (DCF), triclosan (TCS), bisphenol A (BPA), 17β-estradiol (E2), 17α-ethinylestradiol (EE2), and ibuprofen (IBU), giving a total of nine CECs. In this case, the EC process allowed decreasing the CEC content by 19–100% (below the limit of detection), depending on the effluent samples, and the culturable microorganisms by 99.98% after a 6 h treatment. By contributing to CEC degradation and microorganism removal, the EC process proved to be a viable remediation and disinfection technology for secondary effluent from wastewater treatment plants.

Funder

H2020 Marie Skłodowska-Curie Actions

European Regional Development Fund

Portuguese Foundation for Science and Technology

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3