Abstract
The increasing use of multi-parallel grid-connected inverters introduces both high-quality and high-capacity power, while it tends to cause a resonance instability problem. A resonance damper can virtualize a resistor at resonant frequency to suppress the instability effectively, but the resonant frequency should be detected primarily. However, the resonant current or voltage is severely distorted and oscillating, which will lead to the resonant frequency extraction being more difficult. To address it, this paper proposes a resonance detection strategy based on the cascaded second-order generalized integrators (SOGI) and the normalized frequency locked loop (FLL). The cascaded structure ensures the accuracy by completely filtering the fundamental component from the detected voltage or current, and the normalization accelerates the frequency detection. The proposed method can be used as a crucial unit of the resonance damping controller. Finally, the performance of the proposed method is verified by the MATLAB-based simulation and Hardware-in-the-Loop (HIL)-based emulation results.
Funder
National Natural Science Foundation of China
Project funded by China Postdoctoral Science Foundation
the Fundamental Research Funds for the Central Universities
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献