Rapid Detection of the Activity of Lacticaseibacillus Casei Zhang by Flow Cytometry

Author:

Ma Xuebo123ORCID,Wang Lina123,Dai Lixia123,Kwok Lai-Yu123,Bao Qiuhua123

Affiliation:

1. Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China

2. Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China

3. Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China

Abstract

Food processing, e.g., freeze-drying, exerts strong pressure on bacteria in the food matrix, decreasing their viability/activity and even forcing them to become viable but unculturable (VBNC), which are often underestimated by traditional plate count. The strict standards of bacterial viability in probiotic products require accurate cell viability/activity enumeration. We developed a staining (5(6)-carboxyfluorescein diacetate succinimide ester, propidium iodide)-based flow cytometry rapid method for detecting the viability/activity of Lacticaseibacillus (Lb.) casei Zhang, a widely used probiotic in the dairy industry in China. We optimized the procedural and instrumental parameters for generating results comparable to that of standard plate counts. This method was also applied to freeze-dried Lb. casei Zhang, yielding 7.7 × 1011 CFU/g, which was non-significantly higher than the results obtained by plate count (6.4 × 1011 CFU/g), possibly due to the detection of VBNC cells in the freeze-dried powder. We anticipated that this method can be used for detecting lactic acid bacteria in other probiotic food/beverages.

Funder

National Natural Science Foundation of China

Inner Mongolia Natural Science Foundation Project

earmarked fund

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3