Effect of Composite Edible Coatings Combined with Modified Atmosphere Packaging on the Storage Quality and Microbiological Properties of Fresh-Cut Pineapple

Author:

Liao Xingmei12,Xing Yage12ORCID,Fan Xiangfeng1,Qiu Ye1,Xu Qinglian1,Liu Xiaocui12

Affiliation:

1. Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food and Bioengineering, Xihua University, Chengdu 610039, China

2. Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China

Abstract

This study investigated the effect of edible coating (EC), modified atmosphere packaging (MAP), and edible coating + modified atmosphere packaging (EC + MAP) treatments on the quality of fresh-cut pineapples during storage at 4 °C. The quality differences were analyzed by measuring the quality, physiological indicators, and total microbial counts. After 8 d of storage, the brightness (L*) values of the EC + MAP and control samples were 72.76 and 60.83, respectively. The water loss and respiratory rate of the EC + MAP were significantly inhibited from 0% and 29.33 mg CO2 kg−1 h−1 to 4.13% and 43.84 mg CO2 kg−1 h−1, respectively. Furthermore, the fresh-cut pineapples treated with EC + MAP presented a good appearance, with lower total soluble solids (TSS) and relative conductivity and higher titratable acid (TA), ascorbic acid (AA), total phenol content, and firmness compared to the other treatment groups. At the end of storage, the EC + MAP samples exhibited the lowest polyphenol oxidase (PPO) activity, peroxidase (POD) activity, and malondialdehyde (MDA) content at 28.53 U, 60.37 U, and 1.47 nmol·g−1, respectively. Furthermore, the efficiency of EC + MAP treatment exceeded that of EC or MAP alone, preventing key problems involving the surface browning and microbiological safety of the fresh-cut pineapples. The results showed that EC + MAP treatment was more successful in maintaining the storage quality and extending the shelf life of fresh-cut pineapples.

Funder

Science and Technology Support Program of Sichuan

Open Research Subject of International Science and Technology Cooperation (Australia and New Zealand) Institute of Sichuan

Chengdu Science and Technology Project-key research and development program

the College Students Innovation and Entrepreneurship Training Program of Sichuan Province

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3