Detection Method for Tomato Leaf Mildew Based on Hyperspectral Fusion Terahertz Technology

Author:

Zhang Xiaodong1,Wang Yafei1ORCID,Zhou Zhankun1,Zhang Yixue2,Wang Xinzhong1ORCID

Affiliation:

1. College of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China

2. Basic Engineering Training Center, Jiangsu University, Zhenjiang 212013, China

Abstract

Leaf mildew is a common disease of tomato leaves. Its detection is an important means to reduce yield loss from the disease and improve tomato quality. In this study, a new method was developed for the multi-source detection of tomato leaf mildew by THz hyperspectral imaging through combining internal and external leaf features. First, multi-source information obtained from tomato leaves of different disease grades was extracted by near-infrared hyperspectral imaging and THz time-domain spectroscopy, while the influence of low-frequency noise was removed by the Savitzky Golay (SG) smoothing algorithm. A genetic algorithm (GA) was used to optimize the selection of the characteristic near-infrared hyperspectral band. Principal component analysis (PCA) was employed to optimize the THz characteristic absorption spectra and power spectrum dimensions. Recognition models were developed for different grades of tomato leaf mildew infestation by incorporating near-infrared hyperspectral imaging, THz absorbance, and power spectra using the backpropagation neural network (BPNN), and the models had recognition rates of 95%, 96.67%, and 95%, respectively. Based on the near-infrared hyperspectral features, THz time-domain spectrum features, and classification model, the probability density of the posterior distribution of tomato leaf health parameter variables was recalculated by a Bayesian network model. Finally, a fusion diagnosis and health evaluation model of tomato leaf mildew with hyperspectral fusion THz was established, and the recognition rate of tomato leaf mildew samples reached 97.12%, which improved the recognition accuracy by 0.45% when compared with the single detection method, thereby achieving the accurate detection of facility diseases.

Funder

Project of Agricultural Equipment Department of Jiangsu University

Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University),Ministry of Education

National Key Research and Development Program

The National Natural Science Foundation of China

Scientific and Technological Project of Henan Province

Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), High-tech Key Laboratory of Agricultural Equipment and Intelligence of Jiangsu Province

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3