Benchmarking and Validation of a Bioinformatics Workflow for Meat Species Identification Using 16S rDNA Metabarcoding

Author:

Denay Grégoire1ORCID,Preckel Laura2,Petersen Henning3,Pietsch Klaus4,Wöhlke Anne5,Brünen-Nieweler Claudia2

Affiliation:

1. Chemical and Veterinary Analytical Institute Rhein-Ruhr-Wupper (CVUA-RRW), Deutscher Ring 100, 47798 Krefeld, Germany

2. Chemical and Veterinary Analytical Institute Muensterland-Emscher-Lippe (CVUA-MEL), Joseph-Koenig-Strasse 40, 48147 Muenster, Germany

3. Chemical and Veterinary Analytical Institute Ostwestfalen-Lippe (CVUA-OWL), Westerfeldstrasse 1, 32758 Detmold, Germany

4. State Institute for Chemical and Veterinary Analysis Freiburg (CVUA-FR), Bissierstrasse 5, 79114 Freiburg, Germany

5. Food and Veterinary Institute, Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Dresdenstrasse 2, 38124 Braunschweig, Germany

Abstract

DNA-metabarcoding is becoming more widely used for routine authentication of meat-based food and feed products. Several methods validating species identification methods through amplicon sequencing have already been published. These use a variety of barcodes and analysis workflows, however, no methodical comparison of available algorithms and parameter optimization are published hitherto for meat-based products’ authenticity. Additionally, many published methods use very small subsets of the available reference sequences, thereby limiting the potential of the analysis and leading to over-optimistic performance estimates. We here predict and compare the ability of published barcodes to distinguish taxa in the BLAST NT database. We then use a dataset of 79 reference samples, spanning 32 taxa, to benchmark and optimize a metabarcoding analysis workflow for 16S rDNA Illumina sequencing. Furthermore, we provide recommendations as to the parameter choices, sequencing depth, and thresholds that should be used to analyze meat metabarcoding sequencing experiments. The analysis workflow is publicly available, and includes ready-to-use tools for validation and benchmarking.

Funder

Ministry for Environment, Agriculture, Conservation and Consumer Protection of the State of North Rhine-Westphalia

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3