Effect of Thermal Processes on S-Allyl Cysteine Content in Black Garlic

Author:

Manoonphol Kanokwan1,Suttisansanee Uthaiwan2ORCID,Promkum Chadamas2,Butryee Chaniphun2

Affiliation:

1. Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok 10400, Thailand

2. Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand

Abstract

As a key component of black garlic (BG) products, S-allyl cysteine (SAC) is useful in reducing oxidative stress and inflammation. Several BG products with a high SAC content have been developed by thermal processing; however, the optimum conditions for thermal treatment for producing Thai garlic (multicloves) with a high SAC content compared to Chinese garlic (single clove) are still unknown. Moreover, the mechanism underlying the increase in SAC content in BG is unclear. Thus, this study aimed to investigate the optimum thermal condition for developing Thai BG with high SAC content base on methods A (70 °C and 80% RH) and B (60–75 °C and 80–85% RH). The total phenolic contents and antioxidant activities of Thai fresh garlic, Thai BG, and their powder forms were also compared. Method A worked the best for both types of garlic. The results indicated that the SAC content increased significantly after 7 days of fermentation and decreased drastically afterward with prolonged heat treatment. The optimum thermal condition for producing Thai fresh garlic and Chinese fresh garlic with high SAC content was 70 °C and a relative humidity of 80% for 12 days in an industrial fermentation chamber. The SAC content of Thai BG and Chinese BG increased approximately 139- and 122-fold, respectively. Furthermore, significant antioxidant capabilities determined by ferric ion-reducing antioxidant power, 2,2-diphenyl-1-picrylhydrazyl radical scavenging, and oxygen radical absorbance capacity assays were 34-, 6-, and 3-fold higher, respectively, than those of fresh garlic.

Funder

Agricultural Research Development Agency (Public Organization), Thailand

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3