Affiliation:
1. College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
2. State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
Abstract
The metabolic modulation of major flavor precursors during coffee cherry ripening is critical for the characteristic coffee flavor formation. However, the formation mechanism of flavor precursors during coffee cherry ripening remains unknown. In the present study, a colorimeter was employed to distinguish different maturity stages of coffee cherry based on the coffee cherry skin colors, and proteomics and metabolomics profiles were integrated to comprehensively investigate the flavor precursor dynamics involved in Arabica coffee cherry ripening. The data obtained in the present study provide an integral view of the critical pathways involved in flavor precursor changes during coffee cherry ripening. Moreover, the contributions of critical events in regulating the development of flavor precursors during the four ripening stages of coffee cherries, including the biosynthesis and metabolism pathways of organic acids, amino acids, flavonoids, and sugars, are discussed. Overall, a total of 456 difference express metabolites were selected, and they were identified as being concentrated in the four maturity stages of coffee cherries; furthermore, 76 crucial enzymes from the biosynthesis and metabolism of sugars, organic acids, amino acids, and flavonoids contributed to flavor precursor formation. Among these enzymes, 45 difference express proteins that could regulate 40 primary amino acids and organic acids flavor precursors were confirmed. This confirmation indicates that the metabolic pathways of amino acids and organic acids played a significant role in the flavor formation of Arabica coffee cherries during ripening. These results provide new insights into the protease modulation of flavor precursor changes in Arabica coffee cherry ripening.
Funder
National Natural Science Foundation of China-Yunnan Joint Fund
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献